A Novel Convex Clustering Method for High-Dimensional Data Using Semiproximal ADMM

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Dimensional Clustering Method for High Performance Data Mining

Many clustering methods are not suitable as high-dimensional ones because of the so-called ‘curse of dimensionality’ and the limitation of available memory. In this paper, we propose a new high-dimensional clustering method for the high performance data mining. The proposed high-dimensional clustering method provides efficient cell creation and cell insertion algorithms using a space-partitioni...

متن کامل

A New Method for Dimensionality Reduction using K-Means Clustering Algorithm for High Dimensional Data Set

Clustering is the process of finding groups of objects such that the objects in a group will be similar to one another and different from the objects in other groups. Dimensionality reduction is the transformation of high-dimensional data into a meaningful representation of reduced dimensionality that corresponds to the intrinsic dimensionality of the data. K-means clustering algorithm often do...

متن کامل

PCS: An Efficient Clustering Method for High-Dimensional Data

Clustering algorithms play an important role in data analysis and information retrieval. How to obtain a clustering for a large set of highdimensional data suitable for database applications remains a challenge. We devise in this paper a set-theoretic clustering method called PCS (Pairwise Consensus Scheme) for high-dimensional data. Given a large set of d-dimensional data, PCS first constructs...

متن کامل

An $\ell_1$-Method for Clustering High-Dimensional Data

In general, the clustering problem is NP–hard, and global optimality cannot be established for non–trivial instances. For high–dimensional data, distance–based methods for clustering or classification face an additional difficulty, the unreliability of distances in very high–dimensional spaces. We propose a distance–based iterative method for clustering data in very high–dimensional space, usin...

متن کامل

Clustering High Dimensional Data Using SVM

The Web contains massive amount of documents from across the globe to the point where it has become impossible to classify them manually. This project’s goal is to find a new method for clustering documents that are as close to humans’ classification as possible and at the same time to reduce the size of the documents. This project uses a combination of Latent Semantic Indexing (LSI) with Singu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2020

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2020/9216351